Magnetic helicity fluxes in an α dynamo embedded in a halo

نویسنده

  • Alexander Hubbard
چکیده

We present the results of simulations of forced turbulence in a slab where the mean kinetic helicity has a maximum near the mid-plane, generating gradients of magnetic helicity of both large and small-scale fields. We also study systems that have poorly conducting buffer zones away from the midplane in order to assess the effects of boundaries. The dynamical α quenching phenomenology requires that the magnetic helicity in the small-scale fields approaches a nearly static, gauge independent state. To stress-test this steady state condition we choose a system with a uniform sign of kinetic helicity, so that the total magnetic helicity can reach a steady state value only through fluxes through the boundary, which are themselves suppressed by the velocity boundary conditions. Even with such a set up, the small-scale magnetic helicity is found to reach a steady state. In agreement with earlier work, the magnetic helicity fluxes of small-scale fields are found to be turbulently diffusive. By comparing results with and without halos, we show that artificial constraints on magnetic helicity at the boundary do not have a significant impact on the evolution of the magnetic helicity, except that “softer” (halo) boundary conditions give a lower energy of the saturated mean magnetic field.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Shear-driven and diffusive helicity fluxes in α dynamos

We present non-linear mean-field α dynamo simulations in spherical geometry with simplified profiles of kinetic α effect and shear. We take magnetic helicity evolution into account by solving a dynamical equation for the magnetic α effect. This gives a consistent description of the quenching mechanism in mean-field dynamo models. The main goal of this work is to explore the effects of this quen...

متن کامل

Magnetic helicity fluxes in interface and flux transport dynamos

Context. Dynamos in the Sun and other bodies tend to produce magnetic fields that possess magnetic helicity of opposite sign at large and small scales, respectively. The build-up of magnetic helicity at small scales provides an important saturation mechanism. Aims. In order to understand the nature of the solar dynamo we need to understand the details of the saturation mechanism in spherical ge...

متن کامل

Kinetic helicity needed to drive large-scale dynamos.

Magnetic field generation on scales that are large compared with the scale of the turbulent eddies is known to be possible via the so-called α effect when the turbulence is helical and if the domain is large enough for the α effect to dominate over turbulent diffusion. Using three-dimensional turbulence simulations, we show that the energy of the resulting mean magnetic field of the saturated s...

متن کامل

Paradigm shifts in solar dynamo modeling

Selected topics in solar dynamo theory are being highlighted. The possible relevance of the near-surface shear layer is discussed. The role of turbulent downward pumping is mentioned in connection with earlier concerns that a dynamo-generated magnetic field would be rapidly lost from the convection zone by magnetic buoyancy. It is argued that shear-mediated small-scale magnetic helicity fluxes ...

متن کامل

Turbulent dynamos with advective magnetic helicity flux

Many astrophysical bodies harbour magnetic fields that are thought to be sustained by a dynamo process. However, it has been argued that the production of large-scale magnetic fields by meanfield dynamo action is strongly suppressed at large magnetic Reynolds numbers owing to the conservation of magnetic helicity. This phenomenon is known as catastrophic quenching. Advection of magnetic fields ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010